Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices
نویسندگان
چکیده
Nanomechanical characteristics of standalone silver nanowires (Ag NWs) are a key issue for providing a failure criterion of advanced flexible electrodes that are trending towards smaller radius of curvatures (ROCs). Through in-situ tensile and buckling tests of pentagonal Ag NWs, we demonstrated that the intrinsic fracture strain provides a significant criterion to predict the mechanical and electrical failure of Ag NW electrodes under various strain modes, because the decrease in fracture strain limits figure of merit of flexible devices. The Ag NW electrodes on a polymer substrate exhibited a strain-dependent electrical failure owing to the unique deformation characteristics with a size-dependent brittle-to-ductile transition of the five-fold twinned Ag NWs. All the Ag NWs greater than approximately 40 nm in diameter exhibited brittle fracture with a size-independent stress-strain response under tensile and buckling modes, which leads to the electrical failure of flexible electrodes at the almost same threshold ROC. Meanwhile, the higher ductility of Ag NWs less than 40 nm in diameter resulted in much smaller threshold ROCs of the electrodes due to the highly extended fracture strains, which can afford a high degree of freedom for highly flexible devices.
منابع مشابه
Effective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell
Silver nanowire-based flexible transparent electrodes have critical problem, in spite of their excellent electrical and optical properties, that the electrical conductance and transparency degrade within several days in air because of oxidation of silver. To prevent the degradation of the silver nanowire, we encapsulated Ag-NWs with thin TiO2 barrier. Bar-coated silver nanowires on flexible pol...
متن کاملHighly Robust Silver Nanowire Network for Transparent Electrode.
Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of thes...
متن کاملSolution-processed flexible polymer solar cells with silver nanowire electrodes.
The conventional anode for organic photovoltaics (OPVs), indium tin oxide (ITO), is expensive and brittle, and thus is not suitable for use in roll-to-roll manufacturing of OPVs. In this study, fully solution-processed polymer bulk heterojunction (BHJ) solar cells with anodes made from silver nanowires (Ag NWs) have been successfully fabricated with a configuration of Ag NWs/poly(3,4-ethylenedi...
متن کاملTransparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration
The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxid...
متن کاملLarge scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens.
The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coa...
متن کامل